Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos
نویسندگان
چکیده
Mantle control on planetary dynamos is often studied by imposing heterogeneous core-mantle boundary (CMB) heat flux patterns on the outer boundary of numerical dynamo simulations. These patterns typically enter two main categories: Either they are proportional to seismic tomography models of Earth’s lowermost mantle to simulate realistic conditions, or they are represented by single spherical harmonics for fundamental physical understanding. However, in reality the dynamics in the lower mantle is much more complicated and these CMB heat flux models are most likely oversimplified. Here we term alternative any CMB heat flux pattern imposed on numerical dynamos that does not fall into these two categories, and instead attempts to account for additional complexity in the lower mantle. We review papers that attempted to explain various dynamo-related observations by imposing alternative CMB heat flux patterns on their dynamo models. For present-day Earth, the alternative patterns reflect non-thermal contributions to seismic anomalies or sharp features not resolved by global tomography models. Time-dependent mantle convection is invoked for capturing past conditions on Earth’s CMB. For Mars, alternative patterns account for localized heating by a giant impact or a mantle plume. Recovered geodynamo-related observations include persistent morphological features of present-day core convection and the geomagnetic field as well as the variability in the geomagnetic reversal frequency over the past several hundred Myr. On Mars the models aim at explaining the demise of the paleodynamo or the hemispheric crustal magnetic dichotomy. We report the main results of these studies, discuss their geophysical implications, and speculate on some future prospects.
منابع مشابه
Mantle superplumes induce geomagnetic superchrons
We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and partial collapse of the two seismically-imaged lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of ...
متن کاملCorrelation of Earth’s magnetic field with lower mantle thermal and seismic structure
Variations in the Earth’s lower mantle appear to influence the geodynamo operating in the liquid core. We present a solution to the full dynamo equations with lateral variations in heat flux on the outer boundary defined by the shear wave velocity of the lowermost mantle. The magnetic field is almost stationary and locked to the boundary, with 4 symmetrical concentrations of flux sited beneath ...
متن کاملPreface for the article collection of “Multidisciplinary Researches on Deep Interiors of the Earth and Planets”
Preface Study of the Earth’s Deep Interior (SEDI) is an international scientific organization and a Union Commission of the International Union of Geodesy and Geophysics, whose primary role is exchange and encouragement of knowledge and ideas about deep Earth studies through a biennial international symposium. The 14th SEDI symposium (SEDI2014) was held in Shonan Village Center, Kanagawa, Japan...
متن کاملHeat Flux Modulation in Domino Dynamo Model
Using the domino dynamo model, we show how specific axisymmetric and equatorial symmetric forms of the heat flux variations at the core-mantle boundary change the frequency of the geomagnetic field reversals. In fact, we are able to demonstrate the effect known from the modern 3D planetary dynamo models using an ensemble of interacting spins, which obey equations of the Langevin type with a ran...
متن کاملParameter dependences of convection-driven dynamos in rotating spherical fluid shells
For the understanding of planetary and stellar dynamos an overview of the major parameter dependences of convection driven dynamos in rotating spherical fluid shells is desirable. Although the computationally accessible parameter space is limited, earlier work is extended with emphasis on higher Prandtl numbers and uniform heat flux condition at the outer boundary. The transition from dynamos d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015